Learning Modules
The chapters are followed by a series of learning modules that serve several purposes; some focus on the software tools, while others focus on particular control problems. The first two provide introductions to MATLAB and SIMULINK, the simulation environment for the modules that follow. The third module demonstrates the solution of ordinary differential equations using MATLAB and SIMULINK, while the fourth shows how to use the MATLAB Control Toolbox to create and convert models from one form to another. The modules that follow focus on a particular unit operation, to provide a detailed demonstration of various control system design, analysis or implementation techniques. Module 5 develops a simple isothermal CSTR model that is used in a number of the chapters. Module 6 details the robustness analysis of processes characterized by first-order + deadtime (FODT) models.
Module 7 presents a biochemical reactor with two possible desired operating points; one stable and the other unstable. The controller design and system performance is clearly different at each operating point. The classic jacketed CSTR with an exothermic reaction is studied in Module 8. Issues discussed include recirculation heat transfer dynamics, cascade control, and split-range control. Level control loops can be tuned for two different extremes of closed-loop performance, as shown in Module 9 (steam drum, requiring tight level control) and Module 10 (surge drum, allowing loose level control to minimize outflow variation). Challenges associated with jacketed batch reactors are presented in Module 11. Some motivating biomedical problems are presented in Module 12. Challenges of control loop interaction are demonstrated in the distillation application of Module 13. Module 14 provides an overview of several case study problems in multivariable control. Here the students can download SIMULINK .mdl files for the textbook web page and perform complete modeling and control system design. These case studies are meant to tie together many concepts presented in the text. Issues particular to flow control are discussed in Module 15, and digital control techniques are presented in Module 16.
|